A Note on a Second Order Three-Point Boundary Value Problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Third-Order Three-Point Boundary Value Problem

where η ∈ 0, 1 , α, β ∈ R, f ∈ C 0, 1 × R,R . The parameters α and β are arbitrary in R such that 1 2α 2βη − 2β / 0. Our aim is to give new conditions on the nonlinearity of f , then using Leray-Schauder nonlinear alternative, we establish the existence of nontrivial solution. We only assume that f t, 0 / 0 and a generalized polynomial growth condition, that is, there exist two nonnegative func...

متن کامل

Generalized quasilinearization method for a second order three point boundary-value problem with nonlinear boundary conditions

The generalized quasilinearization technique is applied to obtain a monotone sequence of iterates converging uniformly and quadratically to a solution of three point boundary value problem for second order differential equations with nonlinear boundary conditions. Also, we improve the convergence of the sequence of iterates by establishing a convergence of order k.

متن کامل

A Note on a Fourth Order Discrete Boundary Value Problem

Using variational methods we investigate the existence of solutions and their dependence on parameters for certain fourth order difference equations.

متن کامل

Positive Solutions for a Functional Delay Second-order Three-point Boundary-value Problem

We establish criteria for the existence of positive solutions to the three-point boundary-value problems expressed by second-order functional delay differential equations of the form −x′′(t) = f(t, x(t), x(t− τ), xt), 0 < t < 1, x0 = φ, x(1) = x(η), where φ ∈ C[−τ, 0], 0 < τ < 1/4, and τ < η < 1.

متن کامل

Positive solutions to a generalized second order three-point boundary value problem

Let T be a time scale with 0, T ∈ T. We investigate the existence and multiplicity of positive solutions to the nonlinear second-order three-point boundary-value problem u∆∇(t) + a(t)f(u(t)) = 0, t ∈ [0, T ] ⊂ T, u(0) = βu(η), u(T ) = αu(η) on time scales T, where 0 < η < T , 0 < α < T η , 0 < β < T−αη T−η are given constants.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1994

ISSN: 0022-247X

DOI: 10.1006/jmaa.1994.1299